

How Transferable are Reasoning Patterns in Visual Question Answering?

Check-out our interactive demonstration (online)

https://reasoningpatterns.github.io

Reasoning vs. **Biases** in VQA

VQA model are notorious for their tendency to rely on **shortcuts** [2,3], preventing them to learn to **reason**.

We claim that shortcut learning in VQA is in part due to the visual uncertainty (image representation imperfect).

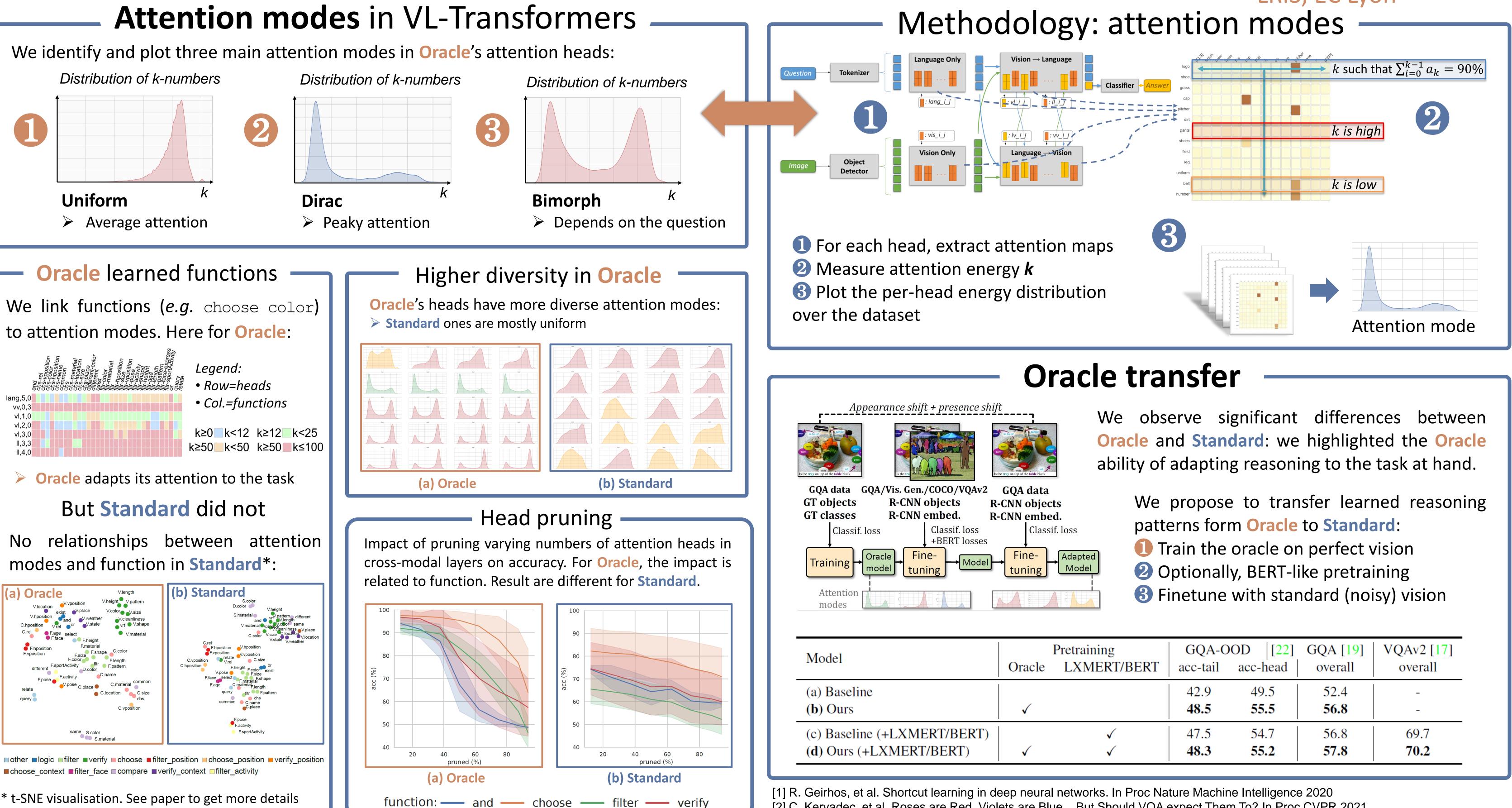
Our contributions

In-depth analysis of **reasoning patterns** at work in VQA

- > Analysing attention mechanisms at work in a VL-Transformer
- > Comparing models with perfect-sight vs. noisy visual inputs

An **oracle transfer** method:

- > Transfer reasoning capabilities, learned by the oracle, to a standard VQA model with noisy input
- Improve overall performance and generalisation on GQA[1]


— Oracle vs. Standard model —

We propose to compare two settings:

- Standard Science Vision is uncertain Apployable
- Image is represented as a set of objects extracted using a pretrained object detector
- > Oracle
- Vision is **perfect not** deployable
- Image is represented using human annotations

Our experiments are based on a Vision-Langage (VL)-Transformer

C. Kervadec^{1,2} T. Jaunet² G. Antipov¹ M. Baccouche¹ R. Vuillemot³ C. Wolf²

* t-SNE visualisation. See paper to get more details

[2] C. Kervadec, et al. Roses are Red, Violets are Blue... But Should VQA expect Them To? In Proc CVPR 2021 [3] D. Hudson, et al. Gqa: A new dataset for real-world visual reasoning and compositional question answering. In Proc CVPR 2019

¹ Orange Innovation ² LIRIS, INSA Lyon ³ LRIS, EC Lyon

aining	GQA-0	OD [22]	GQA [19]	VQAv2 [17]
MERT/BERT	acc-tail	acc-head	overall	overall
	42.9	49.5	52.4	-
	48.5	55.5	56.8	-
\checkmark	47.5	54.7	56.8	69.7
\checkmark	48.3	55.2	57.8	70.2