

¹ Orange Innovation ² LIRIS, INSA Lyon Christian Wolf² Corentin Kervadec^{1,2} Grigory Antipov¹ Moez Baccouche¹

GQA-OOD: a benchmark targeting biases in VQA.

https://github.com/gqa-ood/GQA-OOD

Visual Question Answering

- Answer questions posed over images
- Evaluate high-level **reasoning**
- Datasets are very **imbalanced**
- Models overly rely on **biases**

Biases in VQA

In-domain evaluation (*overall accuracy*) is misleading: > favour models exploiting subtle training set statistics.

Alternatively, naively evaluating generalization by introducing artificial distribution shift between train and test splits is also not completely satisfying [1].

Our contributions

We propose the GQA-OOD benchmark:

fine-grained reorganization of GQA dataset [2]

A two-in-one evaluation:

- \blacktriangleright measure accuracy over both rare and frequent QA
- \succ compare in-*vs.* out-of-distribution accuracy

SOTA VQA models, *including bias reduction methods*, fail to address questions involving infrequent concepts.

Roses are Red, Violets are Blue... But Should VQA expect Them To?

Split data into question groups

2 Construct answer histogram of each group

3 Identify head (frequent) and tail (rare) questions in the group

Model	Uses image	acc-all	acc-tail	acc-head	Δ		Technique	acc-all	acc-tai
Quest. Prior	×	21.6	17.8	24.1	35.4		BUTD [3]	46.4 ± 1.1	42.1 ±0
LSTM [4]	×	30.7	24.0	34.8	45.0		+RUBi+QB	46.7 ± 1.3	42.1 ±1
BUTD [3]	\checkmark	46.4 ± 1.1	$42.1 {\pm} 0.9$	49.1 ± 1.1	16.6		+RUBi [7]	$38.8 {\pm} 2.4$	35.7 ± 2
MCAN [29]	\checkmark	$50.8 {\pm} 0.4$	$46.5{\scriptstyle \pm 0.5}$	53.4 ± 0.6	14.8		+LM [9]	$34.5{\scriptstyle\pm0.7}$	32.2±1
BAN4 [18]	\checkmark	50.2 ± 0.7	$47.2 {\pm} 0.5$	$51.9{\scriptstyle \pm 1.0}$	9.9		+BP [9]	$33.1{\scriptstyle \pm 0.4}$	30.8 ± 1
MMN [8]	\checkmark	52.7	48.0	55.5	15.6				
LXMERT [24]	\checkmark	54.6	49.8	57.7	15.9	Le	<u>eft</u> : VQA mo	dels. <u>Up</u> :	bias re

* References are in the paper

